Evaluation of in-plane compressive densification strain of honeycomb paperboard

Author:

Mou Xin-ni1ORCID,Lu Li-xin23,Zhou Yun-ling1

Affiliation:

1. School of Packaging and Printing Engineering, Tianjin Vocational Institute, Tianjin, China

2. School of Mechanical Engineering, Jiangnan University, Wuxi, China

3. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi, China

Abstract

The compressive densification strain of honeycomb paperboard is one of the important parameters which affect the energy absorption property of honeycomb paperboard. The in-plane bearing mechanism of honeycomb paperboard in plastic zone was analyzed based on compression tests of the single row and multi-rows of honeycomb paperboard. The result indicates that the core layer plays a supporting role in resisting the buckling of the face layer. The double inner folds are formed in machine direction and the symmetrical inner folds are formed in cross direction in a honeycomb core. The core single wall and the face layer play a critical role in the load bearing in machine direction, and the core double walls, core single wall, and face layer all play critical roles in the load bearing in cross direction. On this basis, the evaluation equation of the compressive densification strain was obtained based on the energy absorption efficiency method and geometric scale effect, which are verified so that the experiment and test results are in good agreement.

Funder

the Scientific Research Plan Project of Tianjin Municipal Education Commission

the Science Research Foundation Project of Tianjin Vocational Institute

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3