Multi-objective optimization design of a circular core paper sandwich panel

Author:

Jiang Xiawang12,Zhang Shihao3,Yu Minggong1,Sun Delin1

Affiliation:

1. College of Material Science and Engineering , Central South University of Forestry and Technology , Changsha , 410004 , China

2. Packaging Design of Art , Hunan University of Technology , Zhuzhou , 412007 , China

3. College of Design and Arts , 58287 Hunan Institute of Engineering , Xiangtan , 411104 , China

Abstract

Abstract Ensuring sufficient mechanical performance while enabling lightweight design is critical for utilizing paper sandwich panels in the furniture industry. To design lightweight sandwich panels that balance mechanical properties and cost, this study developed a circular core paper sandwich panel (CCPSP) and investigated its structural efficiency using multi-objective optimization. The response surface method (RSM) based on Box–Behnken design was utilized to establish mathematical models relating the paper tube spacing, inner diameter, and height to the out-of-plane compressive strength, density, and cost. The resulting models effectively revealed the coupled effects of the parameters on the responses. Subsequently, the models were optimized using the non-dominated sorting genetic algorithm II (NSGA-II) to find the Pareto optimal trade-offs between maximizing compressive strength while minimizing its density and cost. The optimization solution resulted in an optimal set of paper tube geometries that maximized the structural efficiency of CCPSP. Overall, lower tube height conferred superior structural efficiency, while tube spacing and diameter were constrained. The results highlight the potential of CCPSP as an efficient and sustainable material for furniture manufacturing, enabled by multi-objective optimization of its structure.

Funder

The Social Science Foundation of Hunan Province

the Research Foundation of Education Bureau of Hunan Province

Provincial and Municipal Joint Fund of Natural Science Foundation of Hunan Province

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3