Finite element modeling and analysis for the integration–rolling–extrusion process of spline shaft

Author:

Cui Minchao1,Zhao Shengdun1,Chen Chao1,Zhang Dawei1,Li Yongyi1

Affiliation:

1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, P.R. China

Abstract

An integration–rolling–extrusion process is raised for the manufacture of spline shaft in this study. First, the principle and procedures of integration–rolling–extrusion process are described. Next, the finite element model with a simplified sector blank is established to obtain a practical method for the simulation of integration-rolling-extrusion process. Through the simulation results, the plastic forming mechanisms are clearly revealed. During the integration–rolling–extrusion process, the equivalent stress, deformation degree, and material flow behavior mainly distribute on the surface layer of the blank and then gradually decrease along the radial inward direction. In the core region of the blank, there are almost no effective stress distribution, deformation degree, and material flow behavior. Next, the experiments are carried out on a specialized forming equipment to verify the finite element model. The results are measured and compared with finite element results. The finite element results show a good agreement with experiments; thus, the finite element analysis on the integration–rolling–extrusion process is credible. In addition, the measurement results show that the dimensions meet the requirement of heavy truck application. It indicates that the integration–rolling–extrusion process is feasible for the manufacture of spline shaft. However, the surface quality of the formed spline shaft is not satisfying, which needs to be discussed further.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference23 articles.

1. Childs PRN. Mechanical design. 2nd ed. Oxford: Butterworth-Heinemann, 2004, pp.1–134.

2. Guan WD. Construction of automobile. 3rd ed. Beijing, China: China Machine Press, 2010, pp.224–310 (in Chinese).

3. Finite element simulation and experimental investigation of forming micro-gear with Zr–Cu–Ni–Al bulk metallic glass

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3