Prediction and analysis of bearing vibration signal with a novel gray combination model

Author:

Yuan Qiang12,Sun Yu2ORCID,Zhou Rui-ping1,Wen Xiao-fei2,Dong Liang-xiong2

Affiliation:

1. School of Energy and Power Engineering, Wuhan University of Technology, Wuhan, China

2. School of Port and Transportation Engineering, Zhejiang Ocean University, Zhoushan, China

Abstract

Bearings are the core components of ship propulsion shafting, and effective prediction of their working condition is crucial for reliable operation of the shaft system. Shafting vibration signals can accurately represent the running condition of bearings. Therefore, in this article, we propose a new model that can reliably predict the vibration signal of bearings. The proposed method is a combination of a fuzzy-modified Markov model with gray error based on particle swarm optimization (PGFM (1,1)). First, particle swarm optimization was used to optimize and analyze the three related parameters in the gray model (GM (1,1)) that affect the data fitting accuracy, to improve the data fitting ability of GM (1,1) and form a GM (1,1) based on particle swarm optimization, which is called PGM (1,1). Second, considering that the influence of historical relative errors generated by data fitting on subsequent data prediction cannot be expressed quantitatively, the fuzzy mathematical theory was introduced to make fuzzy corrections to the historical errors. Finally, a Markov model is combined to predict the next development state of bearing vibration signals and form the PGFM (1,1). In this study, the traditional predictions of GM (1,1), PGM (1,1), and newly proposed PGFM (1,1) are carried out on the same set of bearing vibration data, to make up for the defects of the original model layer by layer and form a set of perfect forecast system models. The results show that the predictions of PGM (1,1) and PGFM (1,1) are more accurate and reliable than the original GM (1,1). Hence, they can be helpful in the design of practical engineering equipment.

Funder

Zhoushan City Science and Technology Planned Project

natural science foundation of zhejiang province

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3