A Performance Prediction Method Based on Sliding Window Grey Neural Network for Inertial Platform

Author:

Cui LangfuORCID,Zhang Qingzhen,Yang Liman,Bai ChenggangORCID

Abstract

An inertial platform is the key component of a remote sensing system. During service, the performance of the inertial platform appears in degradation and accuracy reduction. For better maintenance, the inertial platform system is checked and maintained regularly. The performance change of an inertial platform can be evaluated by detection data. Due to limitations of detection conditions, inertial platform detection data belongs to small sample data. In this paper, in order to predict the performance of an inertial platform, a prediction model for an inertial platform is designed combining a sliding window, grey theory and neural network (SGMNN). The experiments results show that the SGMNN model performs best in predicting the inertial platform drift rate compared with other prediction models.

Funder

the National Science and Technology Major Project of China

Shanghai Aerospace Science and Technology Innovation Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference39 articles.

1. Robust finite time second-order sliding mode stabilization control for floated inertial platform

2. Initial Self-Alignment Method for Inertial Platform on a Stationary Base;Ding;J. Astron.,2017

3. Contrast Analysis of High-accuracy Methods for Stabilization Loop of Inertial Navigation Platform;Li;Missile Space Veh.,2018

4. Research on Calibration Method of Installation Error of Star Sensor in Inertial Platform;Chen;Navig. Control,2017

5. Remaining Useful Lifetime Prediction Method of Controlled Systems Considering Performance Degradation of Actuator;Shi;Acta Autom. Sin.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3