Artificial intelligence metamodel comparison and application to wind turbine airfoil uncertainty analysis

Author:

Ju Yaping1,Zhang Chuhua1,Ma Lin2

Affiliation:

1. Xi’an Jiaotong University, Xi’an, China

2. The University of Sheffield, Sheffield, UK

Abstract

The Monte Carlo simulation method for turbomachinery uncertainty analysis often requires performing a huge number of simulations, the computational cost of which can be greatly alleviated with the help of metamodeling techniques. An intensive comparative study was performed on the approximation performance of three prospective artificial intelligence metamodels, that is, artificial neural network, radial basis function, and support vector regression. The genetic algorithm was used to optimize the predetermined parameters of each metamodel for the sake of a fair comparison. Through testing on 10 nonlinear functions with different problem scales and sample sizes, the genetic algorithm–support vector regression metamodel was found more accurate and robust than the other two counterparts. Accordingly, the genetic algorithm–support vector regression metamodel was selected and combined with the Monte Carlo simulation method for the uncertainty analysis of a wind turbine airfoil under two types of surface roughness uncertainties. The results show that the genetic algorithm–support vector regression metamodel can capture well the uncertainty propagation from the surface roughness to the airfoil aerodynamic performance. This work is useful to the application of metamodeling techniques in the robust design optimization of turbomachinery.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3