Variable-fidelity surrogate model based on transfer learning and its application in multidisciplinary design optimization of aircraft

Author:

Leng Jun-XueORCID,Feng Yuan,Huang WeiORCID,Shen YangORCID,Wang Zhen-GuoORCID

Abstract

Variable-fidelity surrogate models leverage low-fidelity data with low cost to assist in constructing high-precision models, thereby improving modeling efficiency. However, traditional machine learning methods require high correlation between low-precision and high-precision data. To address this issue, a variable-fidelity deep neural network surrogate model based on transfer learning (VDNN-TL) is proposed. VDNN-TL selects and retains information encapsulated in different fidelity data through transfer neural network layers, reducing the model's demand for data correlation and enhancing modeling robustness. Two case studies are used to simulate scenarios with poor data correlation, and the predictive accuracy of VDNN-TL is compared with that of traditional surrogate models (e.g., Kriging and Co-Kriging). The obtained results demonstrate that, under the same modeling cost, VDNN-TL achieves higher predictive accuracy. Furthermore, in waverider shape multidisciplinary design optimization practice, the application of VDNN-TL improves optimization efficiency by 98.9%. After optimization, the lift-to-drag ratio of the waverider increases by 7.86%, and the volume ratio increases by 26.2%. Moreover, the performance evaluation error of the model for both the initial and optimized configurations is less than 2%, further validating the accuracy and effectiveness of VDNN-TL.

Funder

Natural Science Foundation of Hunan Province

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3