A rolling bearing fault diagnosis method based on LSSVM

Author:

Gao Xuejin1234,Wei Hongfei1234ORCID,Li Tianyao1234,Yang Guanglu5

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing, China

2. Engineering Research Center of Digital Community, Ministry of Education, Beijing, China

3. Beijing Laboratory of Urban Mass Transit, Beijing, China

4. Beijing Key Laboratory of Computational Intelligence and Intelligent Systems, Beijing, China

5. Nanyang Cigarette Factory, China Tobacco Henan Industrial Co., Ltd., Nanyang, Henan, China

Abstract

The fault characteristic signals of rolling bearings are coupled with each other, thus increasing the difficulty in identifying the fault characteristics. In this study, a fault diagnosis method of rolling bearing based on least squares support vector machine is proposed. First, least squares support vector machine model is trained with the samples of known classes. Least squares support vector machine algorithm involves the selection of a kernel function. The complexity of samples in high-dimensional space can be adjusted through changing the parameters of kernel function, thus affecting the search for the optimal function as well as final classification results. Particle swarm optimization and 10-fold cross-validation method are adopted to optimize the parameters in the training model. Then, with the optimized parameters, the classification model is updated. Finally, with the feature vector of the test samples as the input of least squares support vector machine, the pattern recognition of the testing samples is performed to achieve the purpose of fault diagnosis. The actual bearing fault data are analyzed with the diagnosis method. This method allows the accurate classification results and fast diagnosis and can be applied in the diagnosis of compound faults of rolling bearing.

Funder

National Natural Science Foundation of China

Beijing Municipal Commission of Education

Natural Science Foundation of Beijing Municipality

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3