Mobility analysis of a typical multi-loop coupled mechanism based on screw theory and its drive layout optimization

Author:

Han Ming1,Yang Dong1ORCID,Shi Baojun1,Li Tiejun1,Feng Jianbin1

Affiliation:

1. School of Mechanical Engineering, Hebei University of Technology, Tianjin, China

Abstract

Improving the load-to-weight ratio of robots is an essential issue in the field of construction robots. In the present study, a method for analyzing the mobility of the typical multi-loop coupled mechanism is proposed, which combines the iterative replacement of generalized kinematic pairs with the screw theory. Then, the driving force/torque, driving power, and total power of actuators are considered as the evaluation indices, and the influence of different drive layouts on the mechanism is analyzed. Obtained results show that the driving force of the moving pair in the drive layout S1 or S3 changes smoothly compared with that in the drive layout S2, and the peak values of the driving force and the driving torque reduce by 49% and 12%, respectively. This demonstrates that the drive layout S1 effectively reduces the quality of the actuators. Finally, the coupled mechanism with the drive layout is applied in a high-altitude curtain wall installation robot, and the prototype of the robot is developed based on the coupled mechanism. Performed experiments show that the load-to-weight ratio in the proposed robot is about 13%.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

national key research and development program of china

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3