Aluminum nitride–filled elastic silicone rubber composites for drag reduction

Author:

Tian Limei1,Wang Yangjun1,Jin E1,Li Yinwu1,Wang Runmao2,Shang Yangeng1

Affiliation:

1. Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China

2. International Society of Bionic Engineering Secretariat, Jilin University, Changchun, China

Abstract

This study presents aluminum nitride/silicone rubber composite as a drag reduction material, inspired by the boundary heating drag reduction mechanism of dolphin skin. Aluminum nitride was added as a thermal conductive filler at weight fractions of 16.67, 21.05, and 28.57 wt% to pristine silicone rubber. Tests of the thermal conductivity and tensile properties showed that the thermal conductivity of all three aluminum nitride/silicone rubber composites were increased 27.9%, 41.4%, and 43.7% than that of the pristine silicone rubber, and the elastic modulus of the composites was increased with the aluminum nitride content. Droplet velocity testing, which can reflect the drag reduction mechanism of the heating boundary controlled by the aluminum nitride/silicone rubber composites, was performed between all three aluminum nitride/silicone rubber composites and pristine silicone rubber. The results showed that the droplet velocity of all three aluminum nitride/silicone rubber composites were higher than pristine silicone rubber, implying that the composites had a drag-reducing function. In terms of the drag-reducing mechanism, the heat conductivity performance of the aluminum nitride/silicone rubber accelerates the heat transfer between the aluminum nitride/silicone rubber composite surface and droplet. The forces between the molecules and droplet dynamic viscosity are reduced, which result in drag reduction. The application of aluminum nitride/silicone rubber composite to control fluid medium will have important value for fluid machinery.

Funder

high-tech industrialization demonstration projects of Jilin province

111project

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3