Analysis and experimental research on motion stability of wall-climbing robot with double propellers

Author:

Liang Peng1ORCID,Gao Xueshan1,Zhang Qingfang1,Li Mingkang1,Gao Rui1,Xu Yuxin1

Affiliation:

1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China

Abstract

This paper presents a wall-climbing robot which can stably hold and move on the ground-wall surface. The robot uses propeller reverse thrust as an adsorption force and can adapt to the surface of several media materials. The influence of the robot’s structural parameters on its power system is analyzed by comparing a single power system test and a robot prototype power test. A structural analysis of the robot is performed under two specific situations; when he is in transition from the ground to a small slope, and when he is on the slope. The force state of the robot is then obtained in different conditions. Experimental results show that the adjustment range of different rotor inclination angles of the robot, the width of the fixed rotor plate and the different near-ground distances, affect the traction of the robot. The robot motion performance and adaptability under different ground/wall environments are analyzed, by conducting the robot climbing experiment under a small slope, a vertical wooden wall surface and a vertical indoor wall surface. Stable adsorption and optimization tests are also performed. Moreover, the stability of the robot’s motion is verified. Finally, a theoretical and experimental accumulation is laid for the realization of the smooth transition of the robot from the ground to the wall.

Funder

National Key Research and Development Program of China

Graduate Technological Innovation Project of Beijing Institute of Technology

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3