Comparative analysis of cycloid pump based on CFD and fluid structure interactions

Author:

Yanhua Wang1,Longlong Huang1ORCID,Yong Liu12,Jingsong Xu2

Affiliation:

1. School of energy and power engineering, North University of China, Taiyuan, Shanxi, China

2. China Weapon Industry Inner Mongolia First Machinery Manufacturing (Group) Co., Ltd., Baotou City, Inner Mongolia Autonomous Region, China

Abstract

At present, in the aspect of numerical simulation of cycloid pump, most studies focused on CFD (Computational Fluid Dynamics) in analyzing the pump performance under different service conditions (such as speed, temperature, etc.). The characteristics of the pump under FSI (Fluid Solid Interaction) have not been considered yet. By means of the dynamic mesh technique in the rotating domain, the fluid structure coupling interface is set up on a cycloidal pump model building in COMSOL. The simulation results obtained by applying CFD and FSI are improved by experimental verification. The results show that: (1) the average flow rate of FSI simulation is closer to the test results, and the mean values of CFD and FSI pressure are closer to the actual outlet boundary settings; (2) by comparing the velocity and pressure of rotation region of CFD and FSI at different temperatures, it is concluded that the pressure CFD calculated in the region is more than FSI, and the velocity CFD calculated is less than FSI; (3) by comparing the pressure distribution at some contact point of the fluid structure coupling interface, it is concluded that the fluctuation value of the pressure of CFD with time is greater than that of FSI. Through the comparison, it is found that the coupling has a great influence on the calculation results. The FSI analysis of the pump makes the analysis results more real and more conducive to the analysis of the flow field and rotor dynamics characteristics of the pump.

Funder

Natural Science Foundation of Shanxi Province

state administration for science, technology and industry for national defense

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3