A real-time signal control strategy at an isolated pedestrian crossing based on radar data

Author:

Qu Xu1ORCID,Guo Tangyi2,Guo Jin2,Lin Yi1,Ran Bin3

Affiliation:

1. School of Transportation, Southeast University, Nanjing, China

2. School of Automation, Nanjing University of Science and Technology, Nanjing, China

3. Department of Civil & Environmental Engineering, University of Wisconsin–Madison, Madison, WI, USA

Abstract

Fixed-time traffic signal control strategy in an isolated pedestrian crossing tends to reduce traffic capacity and expose vulnerable road users to more danger. To mitigate the negative impact of previous control strategy, this study proposed an optimal real-time signal timing strategy to protect pedestrian crossing and at the same time minimize the system-wide traffic delay. With the application of a wide-area radar data, the features of vehicles, pedestrians, and the passing time of non-motor vehicles and pedestrian were captured considering conflicts and traffic delay. The support vector machine for regression was utilized to hypothesize traffic delay by training. The discrete values of hypothetical passing time will be tested. The minimum value of delay can be recognized and the corresponding hypothetical passing time will be recommended as the green time for crossing. The performance of the proposed ORSTS outperformed the fixed-time traffic signal control strategy in reducing traffic delay by 22.3%.

Funder

national natural science foundation of china

the National Science Foundation of Jiangsu Province

the Opening Foundation of Intelligent Transportation Information Sensing and Data Analysis Engineering Laboratory for Jiangsu Province

the China’s Post-doctoral Science Fund

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3