Traffic State Recognition of Intersection Based on Image Model and PCA Hashing

Author:

Zhang Li-li12ORCID,Wang Li2ORCID,Zhao Qi2ORCID

Affiliation:

1. College of Urban Rail Transit and Logistics, Beijing Union University, Beijing 100101, China

2. Beijing Key Lab of Urban Intelligent Control Technology, North China University of Technology, Beijing 100144, China

Abstract

The premise of implementing an effective traffic control strategy is the accurate traffic state recognition. In the existing study, traffic state recognition methods were processed by using statistical characteristics and long-term scale detection of field traffic data. Hence, the dynamic characteristics and subtle changes in traffic flow were easy to overlook. At present, more and more advanced traffic detection technology provides reliable and accurate data for measuring and distinguishing the state of urban road traffic, such as the cooperative vehicle-infrastructure system, wide-area radar technology, and 5G technology. This study proposes a novel method called HTSI (High Precision Traffic State Identification Method), which is based on the advanced detection technology in traffic state recognition at the intersection: The raw data used for intersection traffic state recognition is high-precision detection data of tracking characteristics, which make the data look like a picture of the intersection at God’s perspective. To this end, we construct an image model for intersections and implement image feature extraction in a way that is different from traditional image processing. Then, the traffic state recognition problem at the intersection is translated into an image searching problem with tags. The image searching is realized by the hashing algorithm. Finally, the comprehensive experiments prove that the proposed method is more accurate and finer than other methods.

Funder

Beijing Municipal Great Wall Scholar Program

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3