Simultaneous efficiency improvement of pump and turbine modes for a counter-rotating type pump-turbine

Author:

Kim Jin-Woo12,Suh Jun-Won2,Choi Young-Seok12,Lee Kyoung-Yong2,Kim Joon-Hyung2,Kanemoto Toshiaki3,Kim Jin-Hyuk12

Affiliation:

1. Advanced Energy and Technology, University of Science and Technology, Daejeon, Republic of Korea

2. Thermal & Fluid System R&D Group, Korea Institute of Industrial Technology, Cheonan-si, Republic of Korea

3. Institute of Ocean Energy, Saga University, Saga, Japan

Abstract

This article presents a multi-objective optimization to improve the hydrodynamic performance of a counter-rotating type pump-turbine operated in pump and turbine modes. The hub and tip blade angles of impellers/runners with four blades, which were extracted through a sensitivity test, were optimized using a hybrid multi-objective genetic algorithm with a surrogate model based on Latin hypercube sampling. Three-dimensional steady incompressible Reynolds-averaged Navier–Stokes equations with the shear stress transport turbulence model were discretized via finite volume approximations and solved on a hexahedral grid to analyze the flow in the pump-turbine domain. For the major hydrodynamic performance parameters, the pump and turbine efficiencies were selected as the objective functions. Global Pareto-optimal solutions were searched using the response surface approximation surrogate model with the non-dominated sorting genetic algorithm, which is a multi-objective genetic algorithm. The trade-off between the two objective functions was determined and described with regard to the Pareto-optimal solutions. As a result, the pump and turbine efficiencies for the arbitrarily selected optimum designs in the Pareto-optimal solutions were increased as compared with the reference design.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3