Study of the stability of tunnel construction based on double-heading advance construction method

Author:

Song Zhanping123,Shi Guilin123,Zhao Baoyun4ORCID,Zhao Keming123,Wang Junbao123

Affiliation:

1. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, China

2. Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an, China

3. Institute of Tunnel and Underground Structure Engineering, Xi’an University of Architecture and Technology, Xi’an, China

4. Department of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, China

Abstract

The deformation and significant settlement of surrounding rock often occur during tunnel construction with the condition of abundant water and weak cementing sand. In order to study the construction method and stability under such soft stratum, this article takes Taoshuping tunnel as the engineering background and puts forward a new tunnel construction method—double-heading advance construction method by comparing the advantages and disadvantages of various traditional construction schemes. The numerical simulation of tunnel construction process using this method is carried out to illustrate the rationality and feasibility of the method. The conclusions are drawn by comparing the numerical simulation results with the field monitoring data analysis. The numerical simulation results show that the maximum settlement value caused by excavation construction is in the parts 5 and 6 of the upper half-section and the part 7 of the central section. The settlement values of parts 5, 6, and 7 accounted for 32.4%, 24.3%, and 18.9% of the total settlement values, respectively. So, the supporting measures for double-heading advance excavation construction of these three parts should be strengthened properly. The stress of the right hance changes greatly before and after the demolition of temporary support. The maximum positive value of stress is 23 kPa and the maximum negative value of stress is −32 kPa. Therefore, the length of temporary bracing should be strictly controlled during construction and the monitoring of the right hance area should be strengthened. Furthermore, it is necessary to strengthen the supporting measures and monitoring in the right spandrel area as the surrounding rock pressure in the right spandrel area is higher than the left spandrel area. The optimum excavation height of the upper half-section in Taoshuping tunnel is determined to be 5.4 m and the reasonable excavation distance between parts 1 and 5 is determined to be 25–30 m by parameter optimization. Finally, the variation law of numerical simulation and field monitoring results is consistent, which shows that the double-heading advance construction method has a better effect on the stability control of surrounding rock, and the rationality and feasibility of this method are validated effectively. Therefore, the double-heading advance method is suitable for tunnel construction in the sand stratum with rich water and weak cementation, and the successful implementation of this method in Taoshuping tunnel also provides a reference for subsequent tunnel construction in the sand stratum with rich water and weak cementation.

Funder

National Natural Science Foundation of China

Youth Science and Technology Nova Program of Shaanxi Province

Technology Research and Development Project Foundation by the Ministry of Housing and Urban-Rural Development of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3