Affiliation:
1. College of Traffic & Transportation, Chongqing Jiaotong University, Chongqing, China
Abstract
In order to reduce the heat loss and improve the indicated thermal efficiency of hydrogen-enriched compressed natural gas engines, this article presents a combination of Atkinson cycle with high compression ratio and low heat rejection on the hydrogen-enriched compressed natural gas prototype engine with 55% hydrogen blend. The combustion characteristics and energy distribution of the prototype and modified engines were investigated by simulation, and the conclusions are as follows: the pressure and temperature of modified engines are higher than those of the prototype during the combustion process. Compared with the prototype, the modified engines present lower peak heat release rate, but faster combustion after ignition, and their CA50 are closer to top dead center. Although the high compression ratio engine with Atkinson cycle generates more heat loss, its indicated thermal efficiency still increases by 0.6% with the decrease in the exhaust energy. Furthermore, the high compression ratio engine with low heat rejection and Atkinson cycle combines the advantages of low heat loss and relatively longer expansion stroke, so its heat loss reduces obviously, and 61.6% of the saved energy from low heat rejection and Atkinson cycle can be converted into indicated work that indicates a 4.5% improvement in indicated thermal efficiency over the prototype, which makes it perform better in terms of power and fuel economy simultaneously.
Funder
Chongqing Graduate Education Innovation Fund Project
Chongqing Key Technology Innovation Project of Key Industries
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献