Application of fuzzy logic in constant speed control of hydraulic retarder

Author:

Lei Yulong1,Song Pengxiang1,Zheng Hongpeng1,Fu Yao1,Li Xingzhong1,Song Bin2

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China

2. Hangzhou Advance Gearbox Group Co., Ltd, Hangzhou, China

Abstract

Hydraulic retarders are extensively used in commercial vehicles because of their advantages, such as their large braking torque and long continuous operating hours. In this article, the structure and working principles of hydraulic retarders are introduced, and their dynamic characteristics are analyzed. The theoretical model of a hydraulic retarder is then established based on the dynamic analysis of a vehicle driving downhill. The braking process that involves the hydraulic retarder is divided into three stages. Moreover, the filling ratio controller of the hydraulic retarder is designed by adopting fuzzy control theory to control the braking torque of the vehicle while driving downhill. The vehicle dynamic model and constant-speed control model were then established in the MATLAB/Simulink environment. The simulation results showed that the fuzzy logic controller designed in this study has good constant-torque control and anti-inference performances, which can accurately and immediately produce braking torque to satisfy the braking requirement, thereby enabling the vehicle to drive downhill at a constant speed. As a result, the control strategy designed in this article can lead to significant improvements toward a safe road transport.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3