An optimized harmonic probe with tailored resonant mode for multifrequency atomic force microscopy

Author:

Li Zhenhua1,Shi Tielin1,Xia Qi1ORCID

Affiliation:

1. The State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China

Abstract

For simultaneously measuring specimen’s surface morphology and material properties, multifrequency atomic force microscopy is often employed. In this kind of atomic force microscopy, if the probe’s higher-order resonance frequencies match the integer multiples of its fundamental frequency, the probe’s responses at such harmonic frequencies will be enhanced. Meanwhile, an enlarged effective slope during vibration at the probe’s tip results in an improved probe sensitivity. Moreover, increasing the probe’s natural frequency leads to a fast scanning speed. In this study, we propose to design cantilever probes that satisfy the aforementioned requirements via a structural optimization technique. A cantilever probe is represented by a three-layer symmetrical geometric model, and its width profile is continuously varied through the optimization procedure. Thereafter, an optimized design of probe considering the fifth harmonic is prepared by focused ion beam milling. Both simulation and experiment results show that the prepared probe agrees well with design requirements.

Funder

the Natural Science Foundation for Distinguished Young Scholars of Hubei province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3