Design of Harmonic AFM Probe Subjected to van der Waals Force in the Modified Couple Stress Theory

Author:

Lin Shueei-Muh1ORCID,Chang Ching-Yao1,Liauh Chihng-Tsung1,Wang Wen-Rong1

Affiliation:

1. Mechanical Engineering Department, Kun Shan University and Green Energy Technology Research Centre (GETRC), Tainan 710-03, Taiwan, China

Abstract

The conventional design of harmonic AFM probe geometry is made in neglect of the effects of the size-dependency factor and the tip-sample interacting force. Obviously, the effect of these two factors on the natural frequencies of a probe is significant. In this study, the effects of the two factors on the integer-multiples relation among frequencies are investigated. In this study, the effects of the two factors on the integer-multiples relation among frequencies are investigated. It is discovered that, in general, the integer-multiples relations of the probe’s frequencies in the classical model does not be kept as the same as that in the system with the effect of the size-dependency factor under the same material and geometry properties of probe. In addition, when the probe is used to measure the sample, the deviation of the relations will happen. The smaller the tip-sample distance is, the larger the deviation of integer-multiples frequencies is. The analytical method is presented here such that during scanning a sample at some tip-sample distance, the material and geometry properties of the probe can be tuned to the integer-multiples relation of resonant frequencies. Moreover, five similarity conditions among the systems with and without the effects of size-dependency and the tip-sample interacting force are discovered. According to these conditions, the integer-multiples relation is kept in different systems.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Removal of COD in wastewater by magnetic coagulant prepared from modified fly ash;Environmental Science and Pollution Research;2022-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3