A novel energy-coupling-based control method for double-pendulum overhead cranes with initial control force constraint

Author:

Zhang Menghua1,Ma Xin1,Rong Xuewen1,Song Rui1,Tian Xincheng1,Li Yibin1

Affiliation:

1. School of Control Science and Engineering, Shandong University, Jinan, China

Abstract

A novel energy-coupling-based control method for under-actuated double-pendulum overhead cranes with initial control force constraint is proposed in this article. The significant feature of the designed controller is its superior control performance as well as its strong robustness with respect to parameter variations and external disturbances. By incorporating a smooth hyperbolic tangent function into the control law, the proposed controller guarantees soft start of the trolley. Moreover, to improve the transient performance of the crane system, coupling behavior among the trolley movement, the hook swing, and the payload swing is enhanced by introducing a generalized payload horizontal-displacement signal. Lyapunov techniques and LaSalle’s invariance theorem are utilized to prove the stability of the designed closed-loop system. Simulation results demonstrate that the new energy-coupling control method achieves superior control performance and strong robustness over different payload masses, cable lengths, desired positions, and external disturbances with reduced initial control force.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3