Neural network–based adaptive sliding mode control of three-dimensional double-pendulum overhead cranes with prescribed performance

Author:

Wang Shourui1ORCID,Jin Wuyin1,Zhang Xia2

Affiliation:

1. School of Mechanical and Electronical Engineering, Lanzhou University of Technology, China

2. College of Intelligent Manufacturing, Longdong University, China

Abstract

In order to tackle the uncertainties encountered in the operation of three-dimensional (3D) overhead crane systems and enhance the overall robustness of the control system, an adaptive sliding mode control (SMC) method based on prescribed performance is proposed in this work. Specifically, an integral sliding mode controller (ISMC) based on prescribed performance is designed for the 3D overhead crane dynamics model with double-pendulum effect, which is used to constrict system error. By considering the case of model uncertainty, time-varying parameters, track friction, and so on, the neural network (NN) is employed to estimate unknown terms in the controller design, and the Lyapunov function is applied to analyze the stability of the close-loop system. The results demonstrated that the proposed method can effectively improve the positioning accuracy and payload swing suppression performance of the overhead crane system, and also improve the robustness of the control system to deal with uncertainties.

Funder

Lanzhou Science and Technology Plan Project

Gansu Science and Technology Planning Project

Gansu Province University Industry Support Plan Project

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3