Theoretical and experimental research on the cartridge two-dimensional (2D) electro-hydraulic servo valve

Author:

Zheng Fei-Xia1ORCID,Li Sheng1,Ding Chuan1,Zhao Jian-Tao1,Ruan Jian1

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China

Abstract

A cartridge 2D EHSV based on torque motor is proposed in this paper, which is keeping the advantages of conventional 2D valve, such as compact structure, high power-to-weight ratio, and excellent dynamic characteristics. In order to explore its dynamic characteristics, the design concept and operating principle of the cartridge 2D EHSV valve is presented first. Then the mathematical model of cartridge 2D EHSV valve is derived, especially the rotational viscous damping coefficient which is studied in detail. The simulation results of the open(closed)-loop model show that the support pressure plays an insignificant role in the dynamic characteristics of 2D EHSV, only the phase bandwidth of the closed-loop model increases. And the rise time of the open-loop model is about 10 ms, and the frequency bandwidth is about 40 Hz, while the rise time is about 4 ms and the frequency bandwidth is about 100 Hz of the closed-loop model. Furthermore, as verified by experimental results, the rising time of the step response is about 7 ms and the bandwidth is approximately 38 Hz under the open-loop control, while that is 6 ms and 117 Hz for 25% input signal under the close-loop control. Finally, the difference between the experiment and the simulation is discussed. It is concluded that the cartridge 2D EHSV has excellent dynamic characteristics.

Funder

national key research and development program of china

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3