Multi-objective optimization design of two-dimensional proportional valve with magnetic coupling

Author:

Xu Hao1ORCID,Meng Bin1ORCID,Zhu Chenhang1,Heng Yaozhen1,Ruan Jian1

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China

Abstract

As a hydro-mechanical servo system, the whole performance of the two-dimensional proportional valve with magnetic coupling (2D-MC-PV) highly depend on certain structural parameters. To tradeoff good static/dynamic characteristics, good working stability and low leakage pilot stage, a multi-objective optimization is inevitable for preliminary design stage. Therefore, this paper proposes a multi-objective optimization method based on AMESim and Matlab/Simulink co-simulation model, which optimizes key structural parameters by adjusting weight coefficients (balancing static, dynamic, and pilot leakage performance). Considering that magnetic coupling (MC) is the key component for 2D-MC-PV to realize spool position feedback and translational motion conversion, the analytical equation of MC is derived based on the Coulomb’s law and the law of equivalent magnetic charge, and the Monte Carlo method is used to calculate. Finally, the prototype of 2D-MC-PV is designed and manufactured, and a special experimental platform is built to test the static/dynamic characteristics. The experimental results show that 2D-MC-PV has good working stability: under working pressure of 20 MPa, the maximum no-load flow rate is 108.8 L/min with the hysteresis of 3.36%, and the amplitude and phase frequency width is 27.8 and 36.6 Hz. It shows that the multi-objective optimization method proposed in this paper can be used as an optimization method for 2D-MC-PV.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3