Indoor localization algorithm based on artificial neural network and radio-frequency identification reference tags

Author:

Wen Quangang12ORCID,Liang Yanchun12,Wu Chunguo12,Tavares Adriano3,Han Xiaosong1

Affiliation:

1. Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China

2. Zhuhai Laboratory of Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Zhuhai College of Jilin University, Zhuhai, China

3. Department of Industrial Electronics, University of Minho, Guimarães, Portugal

Abstract

With the development of Internet of Things technology, radio-frequency identification localization methods have been widely applied due to their low cost and ease of deployment. The indoor radio-frequency identification localization algorithm based on received signal strength indication technology is a currently hot topic. Because the received signal strength is highly dependent on environments, the classic algorithms may result in large errors in localization accuracy. This article proposed a new radio-frequency identification localization algorithm, named BP_LANDMARC, by utilizing the back propagation neural network, which is designed to address nonlinear changes in radio-frequency signals. A strategy for selecting different working parameters in variable environments is presented. The evaluation methods of root mean square error and cumulative distribution function are used to compare the proposed algorithm with some existing algorithms. Experimental results show that the proposed algorithm remarkably improves the localization accuracy of both absolute distance and cumulative probability. Moreover, the proposed algorithm performs effectively and efficiently when it is applied to a logistics warehouse management system.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3