A WKNN Indoor Fingerprint Localization Technique Based on Improved Discrimination Capability of RSS Similarity

Author:

Wang Baofeng1ORCID,Li Qinghai1,Liu Jia12,Wang Zumin3,Yu Qiudong1,Liang Rui1

Affiliation:

1. School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin 300222, China

2. School of Information Technology Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China

3. College of Information Engineering, Dalian University, Dalian 116600, China

Abstract

There are various indoor fingerprint localization techniques utilizing the similarity of received signal strength (RSS) to discriminate the similarity of positions. However, due to the varied states of different wireless access points (APs), each AP’s contribution to RSS similarity varies, which affects the accuracy of localization. In our study, we analyzed several critical causes that affect APs’ contribution, including APs’ health states and APs’ positions. Inspired by these insights, for a large-scale indoor space with ubiquitous APs, a threshold was set for all sample RSS to eliminate the abnormal APs dynamically, a correction quantity for each RSS was provided by the distance between the AP and the sample position to emphasize closer APs, and a priority weight was designed by RSS differences (RSSD) to further optimize the capability of fingerprint distances (FDs, the Euclidean distance of RSS) to discriminate physical distance (PDs, the Euclidean distance of positions). Integrating the above policies for the classical WKNN algorithm, a new indoor fingerprint localization technique is redefined, referred to as FDs’ discrimination capability improvement WKNN (FDDC-WKNN). Our simulation results showed that the correlation and consistency between FDs and PDs are well improved, with the strong correlation increasing from 0 to 76% and the high consistency increasing from 26% to 99%, which confirms that the proposed policies can greatly enhance the discrimination capabilities of RSS similarity. We also found that abnormal APs can cause significant impact on FDs discrimination capability. Further, by implementing the FDDC-WKNN algorithm in experiments, we obtained the optimal K value in both the simulation scene and real library scene, under which the mean errors have been reduced from 2.2732 m to 1.2290 m and from 4.0489 m to 2.4320 m, respectively. In addition, compared to not using the FDDC-WKNN, the cumulative distribution function (CDF) of the localization errors curve converged faster and the error fluctuation was smaller, which demonstrates the FDDC-WKNN having stronger robustness and more stable localization performance.

Funder

Hebei Province Higher Education Science and Technology Research Key Project

Research Start-up Fund Project of Tianjin University of Technology and Education

Scientific Research Project of Tianjin Municipal Education Commission

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3