Analysis of influencing factors for rear-end collision on the freeway

Author:

Xi Jianfeng1ORCID,Guo Hongyu1,Tian Jian2,Liu Lisa3,Sun Weifu1

Affiliation:

1. Jilin University, Changchun, China

2. China Academy of Transportation Sciences, Beijing, China

3. AECOM Canada Ltd., Calgary, AB, Canada

Abstract

Rear-end collision accounts for the main type of traffic accidents occurring on the freeway. In order to extract the significant influence factors of rear-end collision on the freeway, this study utilized the data of freeway traffic accidents between 2010 and 2015 in China. First, based on quasi-induced exposure theory, the information of driver, vehicle, and road environment was analyzed. Gender, age, driving age, vehicle safety, load, weather, fatigue, driving speed, road alignment, accident time, and visibility were selected as the important factors that might affect rear-end collision. Second, based on logistic regression model, the influencing factors analysis model of freeway rear-end collision was established. In the regression analysis, the possible important factors selected were taken as the independent variables, and the accident responsibility was taken as the dependent variable. Then, the factors that had significant influence on rear-end collision were selected from candidate independent variables by stepwise regression method. Finally, the specific influence of driving age, load, weather, accident time, visibility, fatigue, and driving speed on rear-end collision occurring on the freeway was discussed. The analysis results were explained according to the odds ratio. The research results of this article can provide guidance for the prevention of rear-end collision on the freeway and theoretical support for the development of freeway early warning system.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3