A new fault diagnosis and fault-tolerant control method for mechanical and aeronautical systems with neural estimators

Author:

Qi Haiying1,Shi Yiran2,Tian Yantao2,Mayhew Clifford3,Yu Ding-Li3ORCID,Gomm J Barry3,Zhang Qian3

Affiliation:

1. School of Electronics and Information, Changchun Architecture & Civil Engineering College, Changchun, China

2. School of Control Theory and Engineering, College of Communications Engineering, Jilin University, Changchun, China

3. Control Systems Research Group, Liverpool John Moores University, Liverpool, UK

Abstract

A new method of fault detection and fault-tolerant control is proposed in this article for mechanical systems and aeronautical systems. The faults to be estimated and diagnosed are malfunctions that occurred within the control loops of the systems, rather than some static faults, such as gearbox fault, component cracks, and so on. In the proposed method, two neural networks are used as online estimators, the fault will be accurately estimated when the estimators are adapted online with the post-fault dynamic information. Furthermore, the estimated values of faults are used to compensate for the impact of the faults, so that the stability and performance of the system with the faults are maintained until the faulty components to be repaired. The sliding mode control is used to maintain system stability under the post-fault dynamics. The control law and the neural network learning algorithms are derived using the Lyapunov method, so that the neural estimators are guaranteed to converge to the fault to be diagnosed, while the entire closed-loop system stability is guaranteed with all variables bounded. The main contribution of this article to the knowledge in this field is that the proposed method can not only diagnose and tolerant with constant fault but also diagnose and tolerant with the time-varying faults. This is very important because most faults occurred in industrial systems are time varying in nature. A simulation example is used to demonstrate the design procedure and the effectiveness of the method. The simulation results are compared with the two existing methods that can cope with constant faults only, and the superiority is demonstrated.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3