Complementary ensemble adaptive sparsest narrow-band decomposition method and its applications to the gear crack fault diagnosis

Author:

Peng Yanfeng1,Chen Junhang1ORCID,Luo Ruiqiong2,Xie Xiaojun3,Zhu Xianyu3,Liu Yanfei4,Lu QingHua5,He Kuanfang5

Affiliation:

1. Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan, P.R. China

2. School of Automation, Central South University, Changsha, P.R. China

3. Hunan Institute of Metrology and Test, Changsha, P.R. China

4. College of Mechanical and Vehicle Engineering, Hunan University, Changsha, P.R. China

5. School of Mechatronics Engineering, Foshan University, Foshan, P.R. China

Abstract

Adaptive sparsest narrow-band decomposition is the most sparse solution to search for signals in the over-complete dictionary library containing intrinsic mode functions, which transform the signal decomposition into an optimization problem, but the calculation accuracy must be improved in the case of strong noise interference. Therefore, in combination with the algorithm of the complementary ensemble empirical mode decomposition, a new method of the complementary ensemble adaptive sparsest narrow-band decomposition is obtained. In the complementary ensemble adaptive sparsest narrow-band decomposition, the white noise opposite to the paired symbol is added to the target signal to reduce the reconstruction error and realize the adaptive decomposition of the signal in the process of optimizing the filter parameters. The analysis results of the simulation and experimental data show this method is superior to complementary ensemble empirical mode decomposition and adaptive sparsest narrow-band decomposition in inhibiting the mode confusion, endpoint effect, improving the component orthogonality and accuracy, and effectively identifying the gears fault types.

Funder

Changsha Science and Technology Program

national basic research program of china

National Natural Science Foundation of China

Hunan Provincial Key Research and Development Program

Hunan Provincial Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3