Rolling bearing fault diagnosis method based on data-driven random fuzzy evidence acquisition and Dempster–Shafer evidence theory

Author:

Sun Xianbin1,Tan Jiwen1,Wen Yan1,Feng Chunsheng1

Affiliation:

1. College of Mechanical and Electrical Engineering, Qingdao Technological University, Shandong, China

Abstract

Rolling bearing is of great importance in rotating machinery, so the fault diagnosis of rolling bearing is essential to ensure safe operations. The traditional diagnosis approach based on characteristic frequency was shown to be not consistent with experimental data in some cases. Furthermore, two data sets measured under the same circumstance gave different characteristic frequency results, and the harmonic frequency was not linearly proportional to the fundamental frequency. These indicate that existing fault diagnosis is inaccurate and not reliable. This work introduced a new method based on data-driven random fuzzy evidence acquisition and Dempster–Shafer evidence theory, which first compared fault sample data with fuzzy expert system, followed by the determination of random likelihood value and finally obtained diagnosis conclusion based on the data fusion rule. This method was proved to have high accuracy and reliability with a good agreement with experimental data, thus providing a new theoretical approach to fuzzy information processing in complicated numerically controlled equipments.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3