Vibration Energy at Damage-Based Statistical Approach to Detect Multiple Damages in Roller Bearings

Author:

Yuan XiaoqingORCID,Azeem NaqashORCID,Khalid Azka,Jabbar Jahanzeb

Abstract

This study proposes a statistical approach based on vibration energy at damage to detect multiple damages occurring in roller bearings. The analysis was performed at four different rotating speeds—1002, 1500, 2400, and 3000 RPM—following four different damages—inner race, outer race, ball, and combination damage—and under two types of loading conditions. These experiments were performed on a SpectraQuest Machinery Fault Simulator™ by acquiring the vibration data through accelerometers under two operating conditions: with the bearing loader on the rotor shaft and without the bearing loader on the rotor shaft. The histograms showed diversity in the defected bearing as compared to the intact bearing. There was a marked increase in the kurtosis values of each damaged roller bearing. This research article proposes that histograms, along with kurtosis values, represent changes in vibration energy at damage that can easily detect a damaged bearing. This study concluded that the vibration energy at damage-based statistical technique is an outstanding approach to detect damages in roller bearings, assisting Industry 4.0 to diagnose faults automatically.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3