Investigation of unsteady flow in a centrifugal pump at low flow rate

Author:

Li Yi1,Li Xiaojun1,Zhu Zuchao1,Li Fengqin1

Affiliation:

1. Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China

Abstract

Due to the characteristics of unsteady flow in the centrifugal pump at low flow rate is not revealed well, a simulation of the internal flow at different flow rates is carried out with renormalization group k–ε turbulence model and multiple reference frame. For analyzing the influence of flow rate, ratios of flow rate ( Q/ Qd) are set to 0.1, 0.3, 0.6, and 1.0 at this study. The hydraulic performance of the centrifugal pump obtained by numerical calculation has matched well with the corresponding experimental result. From the characteristics of the internal flow captured by the numerical simulation, it can be seen that backflow occurs in the inlet of impeller at low flow rate, which prevents fluid discharging into impeller passages and leads to vortical structures in suction region. With further decrease in flow rate, the strength of backflow has been intensified, and the number of vortex has significantly increased. A visualization experiment of the backflow evolution in suction pipe is carried out to validate the unsteady simulated results. Results show that the prerotation is an important factor for the deterioration of centrifugal pump performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3