Analysis of Fluid-Structure Coupling Dynamic Characteristics of Centrifugal Pump Rotor System

Author:

Yuan Jianping,Shi Jiali,Fu Yanxia,Chen Huilong,Lu Rong,Hou Xueliang

Abstract

Safety and reliable operation is one of the most important research areas for centrifugal pump systems, due to the interaction of complex flow, large structural load, and vibration caused by the operation of the impeller. To analyze the internal flow and impeller deformation of the centrifugal pump, the single-stage single-suction centrifugal pump titled IS100-80-160 was selected as the research object. Under the principle of single variable, the turbulent flow and structural response of three impellers designed by different parameters were calculated by CFX and ANSYS Workbench. A numerical simulation of steady flow at different flow rates of the centrifugal pump was carried out, and its hydraulic performance is consistent with the corresponding experimental results. By comparing the deformation of the impeller rotor system, it was found that the closed impeller has the worst stability with the best hydraulic performance; the impeller with split blades has the worst stability with the best hydraulic performance. This study could enhance the understanding of impeller FSI on centrifugal pump stability and provide a reference for improving the operational stability of centrifugal pumps.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3