Effects of passive pre-chamber jet ignition on combustion and emission at gasoline engine

Author:

Duan Wei1,Huang Zhaoming2ORCID,Chen Hong3,Tang Ping1,Wang Li24,Chen Weiguo5

Affiliation:

1. School of Mechanical and Automotive Engineering, Anhui Water Conservancy Technical College, Hefei, China

2. School of Mechanical Engineering, Wanjiang University of Technology, Maanshan, China

3. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, China

4. School of Mechanical and Automotive Engineering, Xuancheng Vocational and Technical College, Xuancheng, China

5. Engine Engineering Research Institute, Chery Automobile Co., Ltd., Wuhu, China

Abstract

Pre-chamber jet ignition is a promising way to improve fuel consumption of gasoline engine. A small volume passive pre-chamber was tested at a 1.5L turbocharged GDI engine. Combustion and emission characteristics of passive pre-chamber at low-speed WOT and part load were studied. Besides, the combustion stability of the passive pre-chamber at idle operation has also been studied. The results show that at 1500 r/min WOT, compared with the traditional spark ignition, the combustion phase of pre-chamber is advanced by 7.1°CA, the effective fuel consumption is reduced by 24 g/kW h, and the maximum pressure rise rate is increased by 0.09 MPa/°CA. The knock tendency can be relieved by pre-chamber ignition. At part load of 2000 r/min, pre-chamber ignition can enhance the combustion process and improve the combustion stability. The fuel consumption of pre-chamber ignition increases slightly at low load, but decreases significantly at high load. Compared with the traditional spark ignition, the NOx emissions of pre-chamber increase significantly, with a maximum increase of about 15%; the HC emissions decrease, and the highest decrease is about 36%. But there is no significant difference in CO emissions between pre-chamber ignition and spark plug ignition. The intake valve opening timing has a significant influence on the pre-chamber combustion stability at idle operation. With the delay of the pre-chamber intake valve opening timing, the CoV is reduced and can be kept within the CoV limit.

Funder

Open Fund Projects of Maanshan Engineering Technology Research Center of Advanced Design for Automotive Stamping Dies

Key Project of Natural Science Research in Colleges and Universities of Anhui Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3