Autoencoder-based candidate waypoint generation method for autonomous flight of multi-unmanned aerial vehicles

Author:

Kwak Jeonghoon1ORCID,Sung Yunsick1ORCID

Affiliation:

1. Department of Multimedia Engineering, Dongguk University–Seoul, Seoul, Republic of Korea

Abstract

Unmanned aerial vehicles may collide with obstacles, such as trees or other unmanned aerial vehicles, while flying. A waypoint-based flight path is an approach to avoid such obstacles. To specify waypoints for the safe flight of unmanned aerial vehicles, it is necessary to define a flight path in advance by analyzing the flight records of unmanned aerial vehicles and thereby designate the waypoints automatically. However, there is a problem in that pilots tend to make errors in controlling unmanned aerial vehicles and collecting flight records. This article proposes a method to generate candidate waypoints for a flight path by removing such unintended flight records. In this method, images representing the positions in the collected flight records are generated. The candidate waypoints are generated as positions corresponding to the overlapping pixels of the images generated via image accumulation based on the flight records and the ones generated by accumulating the images reconstructed using an Autoencoder. The unmanned aerial vehicles can be set the waypoints for an autonomous flight using the candidate waypoints. An experiment was conducted in a university to generate candidate waypoints for road monitoring. The results obtained using the proposed method and K-means algorithm were compared. The candidate waypoints generated using the proposed method were reduced by 84.21% compared to those generated using the K-means algorithm.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survey on ML Investment in UAV Based Cellular Network;2023 International Conference on Information Technology, Applied Mathematics and Statistics (ICITAMS);2023-03-20

2. Machine Learning-Aided Operations and Communications of Unmanned Aerial Vehicles: A Contemporary Survey;IEEE Communications Surveys & Tutorials;2023

3. Machine Learning and AI Approach to Improve UAV Communication and Networking;Studies in Computational Intelligence;2022

4. Advanced Double Layered Multi-Agent Systems Based on A3C in Real-Time Path Planning;Electronics;2021-11-12

5. Artificial Intelligence for UAV-Enabled Wireless Networks: A Survey;IEEE Open Journal of the Communications Society;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3