Advanced Double Layered Multi-Agent Systems Based on A3C in Real-Time Path Planning

Author:

Lee Dajeong,Kim Junoh,Cho KyungeunORCID,Sung YunsickORCID

Abstract

In this paper, we propose an advanced double layered multi-agent system to reduce learning time, expressing a state space using a 2D grid. This system is based on asynchronous advantage actor-critic systems (A3C) and reduces the state space that agents need to consider by hierarchically expressing a 2D grid space and determining actions. Specifically, the state space is expressed in the upper and lower layers. Based on the learning results using A3C in the lower layer, the upper layer makes decisions without additional learning, and accordingly, the total learning time can be reduced. Our method was verified experimentally using a virtual autonomous surface vehicle simulator. It reduced the learning time required to reach a 90% goal achievement rate by 7.1% compared to the conventional double layered A3C. In addition, the goal achievement by the proposed method was 18.86% higher than that of the traditional double layered A3C over 20,000 learning episodes.

Funder

Agency for Defense Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3