Path Planning Algorithm for Unmanned Surface Vessel Based on Multiobjective Reinforcement Learning

Author:

Yang Caipei1,Zhao Yingqi1,Cai Xuan2,Wei Wei2,Feng Xingxing2,Zhou Kaibo1ORCID

Affiliation:

1. MOE Key Laboratory of Image Information Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China

2. Wuhan Second Ship Design and Research Institute, Wuhan 430205, China

Abstract

It is challenging to perform path planning tasks in complex marine environments as the unmanned surface vessel approaches the goal while avoiding obstacles. However, the conflict between the two subtarget tasks of obstacle avoidance and goal approaching makes the path planning difficult. Thus, a path planning method for unmanned surface vessel based on multiobjective reinforcement learning is proposed under the complex environment with high randomness and multiple dynamic obstacles. Firstly, the path planning scene is set as the main scene, and the two subtarget scenes including obstacle avoidance and goal approaching are divided from it. The action selection strategy in each subtarget scene is trained through the double deep Q-network with prioritized experience replay. A multiobjective reinforcement learning framework based on ensemble learning is further designed for policy integration in the main scene. Finally, by selecting the strategy from subtarget scenes in the designed framework, an optimized action selection strategy is trained and used for the action decision of the agent in the main scene. Compared with traditional value-based reinforcement learning methods, the proposed method achieves a 93% success rate in path planning in simulation scenes. Furthermore, the average length of the paths planned by the proposed method is 3.28% and 1.97% shorter than that of PER-DDQN and dueling DQN, respectively.

Funder

Marine Defense Technology Innovation Center Innovation Fund

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3