Experimental study of thermophysical properties and nanostructure of self-assembled water/polyalphaolefin nanoemulsion fluids

Author:

Xu Jiajun1,Hammouda Boualem2,Cao Fangyu3,Yang Bao3

Affiliation:

1. Department of Mechanical Engineering, University of the District of Columbia, Washington, DC, USA

2. Center for Neutron Research, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA

3. Department of Mechanical Engineering, University of Maryland, College Park, MD, USA

Abstract

In this study, the nanostructures and thermophysical properties (thermal conductivity, viscosity, and specific heat) of one new type of nanostructured heat transfer fluid, water/polyalphaolefin nanoemulsion fluid, are investigated. The water/polyalphaolefin nanoemulsion fluids are thermodynamically stable containing dispersed water nanodroplets formed by self-assembly. It has been found that the nanostructure inside nanoemulsion fluids may affect their thermophysical properties, especially the phase change heat transfer characteristics. The small-angle neutron scattering technique has been used to help identify the nanostructure inside the water/polyalphaolefin nanoemulsion fluids. By using the 3-region Guinier–Porod model, the fitting curve shows that there is a nonlinear variation of the nanodroplets’ size and shape with water’s concentration, which also coincides with the trend of its viscosity and specific heat. On the other hand, the thermal conductivity increases linearly with higher volume fraction of water which, however, appears to be insensitive to the nanostructure change. While the water nanodroplets inside can increase the thermal conductivity of the nanoemulsion fluid by 16%, its effective specific heat can be boosted up to 90% when the water nanodroplets undergo liquid–solid phase change.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3