Laboratory Configurations for PCM-TES Materials: A Review

Author:

Munteanu Ioana G.,Tudose Eugenia T. Iacob

Abstract

The global energy crisis and the negative impact on the environment of the existing technologies have constrained researchers to capture several types of waste energy using different technologies and materials. For heat, energy harvesting technologies include a major source, the sun, and as an effective storage media, phase change materials. The current review covers experimental laboratory configurations used for thermal energy storage (TES), mainly with phase change materials as working fluids. The required characteristics of PCM-TES materials are covered. Geometric configurations, starting with simple shell-and-tube heat exchanger (HX), other multiple constructive alternatives, plate HX, and also modular HX or fixed and fluidized beds systems are overviewed in order to concentrate on heat transfer characteristics important for TES systems operation and optimization. Emphasis falls on important constructive characteristics for thermal performance, such as the heat charge and discharge rates, within specific temperature ranges, depending on the type of TES fluid used, the energy storage capacity, or density. The advantages and disadvantages of each constructive piece of equipment are critically reviewed. Some comparisons among designs are also included, with an accent on beneficial alterations to improve thermal features.

Publisher

Avanti Publishers

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference126 articles.

1. Ciocan A. Contributions to energy storage using hybrid systems from alternative energy sources. PhD Thesis, Ecole Nationales supérieure Mines-Télécom Atlantique, 2017

2. Hauer A. Storage Technology Issues and Opportunities. International Low-Carbon Energy Technology Platform. In Proceedings of the Strategic and Cross-Cutting Workshop “Energy Storage - Issues and Opportunities”, Paris, France, 2011

3. A Comprehensive Review of Thermal Energy Storage

4. IRENA Outlook: Thermal Energy Storage, IRENA supported by Federal Ministry for the Environment and Nuclear Safety, 2020.

5. Groulx D. The rate problem in solid-liquid phase change heat transfer: Efforts and questions toward heat exchanger design rules. In Proceedings of the 16th International Heat Transfer Conference (IHTC-16), Beijing, China, 10–15 August 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3