Study on the influence factors of impact ejection performance for flexible airbag

Author:

Li Yuru12ORCID,Xiao Shoune2,Yang Bing2,Zhu Tao2ORCID,Yang Guangwu2,Xiao Shide1

Affiliation:

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China

2. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China

Abstract

In order to improve the impact ejection performance of the flexible airbag and to reveal the airbag inflating mechanism, a simulation model was built and verified by carrying out the flexible airbag impact ejection test. Based on this model, the influence of mass flow, compression displacement, and airbag thickness on flexible airbag ejection impact performance were studied. The results show that the ejection velocity of the flexible airbag increases as mass flow increases, but the excessive air mass flow does not improve the impact ejection performance of the airbag. The simulation results also demonstrate that the flexible airbag will oscillate reciprocally after it has no more contact with the moving rigid body and every node in the flexible airbag model has the same oscillating displacement. The analysis of compression displacement shows that it has a significant effect on the improvement of ejection performance. In conclusion, to improve the impact ejection performance of flexible airbag, the mass flow and compression displacement should be changed in a certain scope, which can provide reference for the topological structure design of the flexible airbag.

Funder

the National Natural Science Foundation of China

the National Key Research and Development Program of China

the Independent Subject of State Key Laboratory of Traction Power

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference21 articles.

1. Wang JG. Principle and technology of gas gun. Beijing, China: National Defense Industry Press, 2001, pp.40–54.

2. Textural–Spectral Feature-Based Species Classification of Mangroves in Mai Po Nature Reserve from Worldview-3 Imagery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3