Evaluation of electrospun polyurethane scaffolds loaded with cerium oxide for bone tissue engineering

Author:

Mani Mohan Prasath1,Jaganathan Saravana Kumar23ORCID,Khudzari Ahmad Zahran Md4

Affiliation:

1. School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia

2. Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam

3. Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam

4. IJN-UTM Cardiovascular Engineering Center, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia

Abstract

Electrospun polyurethane (PU) scaffolds were developed containing cerium oxide (CeO2). Photomicrograph of the composites revealed the diameter of the PU/CeO2 (264 ± 169 nm) was smaller than the polyurethane scaffold (994 ± 113 nm). The fabricated PU/CeO2 (110° ± 1) scaffold displayed a more hydrophobic nature as depicted by increasing contact angle compared to the pristine PU (105° ± 3). Fourier transform infrared spectroscopy (FTIR) results presented evidence for the cerium oxide presence in the PU matrix through the formation of the hydrogen bond. The surface roughness of PU/CeO2 (301 ± 52 nm) was reduced in comparison with pristine PU (854 ± 32 nm) as estimated in the atomic force microscopy (AFM) analysis. Cerium oxide enhanced the thermal and tensile behaviour of the pristine PU. Coagulation assays indicated delayed clotting time and a less toxic nature to red blood cells of PU/CeO2 than pristine PU. Further, the calcium deposition in the nanocomposites (10.5%) was higher compared to pure PU (2.4%) as showed in bone mineralization testing. Hence with these potent properties, PU/CeO2 holds as a promising candidate for bone regeneration.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3