Affiliation:
1. Tianjin Key Lab for Rare Earth Materials and Applications Center for Rare Earth and Inorganic Functional Materials School of Materials Science and Engineering National Institute for Advanced Materials Nankai University Tianjin 300350 China
2. College of Chemistry Nankai University Tianjin 300350 China
Abstract
AbstractDisease or organ damage due to unhealthy living habits, or accidents, is inevitable. Discovering an efficient strategy to address these problems is urgently needed in the clinic. In recent years, the biological applications of nanotechnology have received extensive attention. Among them, as a widely used rare earth oxide, cerium oxide (CeO2) has shown good application prospects in biomedical fields due to its attractive physical and chemical properties. Here, the enzyme‐like mechanism of CeO2 is elucidated, and the latest research progress in the biomedical field is reviewed. At the nanoscale, Ce ions in CeO2 can be reversibly converted between +3 and +4. The conversion process is accompanied by the generation and elimination of oxygen vacancies, which give CeO2 the performance of dual redox properties. This property facilitates nano‐CeO2 to catalyze the scavenging of excess free radicals in organisms, hence providing a possibility for the treatment of oxidative stress diseases such as diabetic foot, arthritis, degenerative neurological diseases, and cancer. In addition, relying on its excellent catalytic properties, customizable life‐signaling factor detectors based on electrochemical techniques are developed. At the end of this review, an outlook on the opportunities and challenges of CeO2 in various fields is provided.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Natural Science Foundation of Tianjin City
Higher Education Discipline Innovation Project
Subject
Pharmaceutical Science,Biomedical Engineering,Biomaterials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献