Liquid-mediated particle capture by nonwoven filter media for automotive engine intake air filtration

Author:

Yadav Shivendra1,Das Dipayan1ORCID

Affiliation:

1. Department of Textile and Fibre Engineering, IIT Delhi, New Delhi, India

Abstract

This article reports on development, characterization, and performance of liquid-treated nonwoven air filter media for automotive engine intake application. A polypropylene fiber-based needle-punched nonwoven fabric was prepared for treatment with four viscous liquids (glycerol, SAE 20W/50 engine oil, PEG 400, and deionized water) by liquid spraying technique. The filtration performance was evaluated in terms of initial and final gravimetric filtration efficiencies, fractional filtration efficiency, evolution of pressure drop, and dust holding capacity. The liquid-treated filter media registered higher gravimetric as well as fractional filtration efficiency and higher dust holding capacity as compared to the untreated ones. The initial and final gravimetric filtration efficiencies were found to be directly related to liquid add-on via a power law relationship. The liquid-treated filter media also exhibited higher fractional filtration efficiency than their untreated counterparts for all sizes of tested particles. Interestingly, the increase of fractional efficiency was more for smaller particles as compared to larger ones. This was explained quantitatively through single fiber efficiency due to adhesion. The viscosity of liquid was found to be a very crucial parameter as the dust deposition morphology was contingent to the flow of liquid onto the filter media. The stickiest liquid yielded highest filtration efficiencies, displayed slowest rise of pressure drop, and exhibited highest dust holding capacity.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3