Multifunctional silver nanowire coated fabric capable of electrothermal, resistance temperature-sensitivity, electromagnetic interference shielding, and strain sensing

Author:

Hong Xinghua123ORCID,Zhao Weili1,Yu Rufang1,Wang Qicai1,Zeng Fangmeng1,Tao Yuan4,Jin Ziming1ORCID,Zhu Chengyan123

Affiliation:

1. College of Textiles (International silk institute), Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, P. R. China

2. Key Laboratory of Silk Culture Inheriting and Products Design Digital Technology, Ministry of Culture and Tourism, P. R. China

3. Zhejiang Sci-tech University Tongxiang Research Institute, Tongxiang, P. R. China

4. College of Fashion Garments, Hangzhou Vocational and Technical College, Hangzhou, P. R. China

Abstract

The integration of high conductive networks and textiles has become a favorable technical route to fulfill the objectives of wearable electronics. Herein, high stretchable and recoverable PET fabric coated with a layer of silver nanowire network by a simple and scalable polyol-method is provided. The electrothermal performance, resistance temperature-sensitivity, electromagnetic shielding performance, strain sensing, and washability of silver nanowire (AgNWs)/PET fabrics with different coating times were performed. The conductivity of the fabric coated AgNWs of 2.8 mg/cm2 is as high as 175 S/m, the EMI shielding effectiveness is 37 dB, and it gives a highly sensitive strain response to human movement (gauge factor of −6.16 under 10% strain) and an underwater oil repellent angle of 125°. The heating temperature can reach above 100°C within 27 s under an applied current of 0.10 A. In addition, an excellent linearity of the resistance temperature-sensitive behavior for AgNWs/PET fabrics is obtained, and fabric Ag-5 gives a negative temperature coefficient of resistance (TCR) of −0.05%/°C. Knitted fabric with multi-function is obtained by use of silver nanowire coating. This method provides a simple, low-cost and easy-to-scalable process for the production of electronic textiles, such as fabric heater, microwave blocker, sensor, and other technologies.

Funder

National Natural Science Foundation of China

Public Welfare Project of Zhejiang Province

China Postdoctoral Science Foundation

Shandong Provincial Natural Science Foundation

Postdoctoral Foundation of Zhejiang Sci-tech University Tongxiang Research Institute

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3