Author:
Gong Xiaofeng,Hu Tianjiao,Zhang You,Zeng Yanan,Zhang Ye,Jiang Zhenhua,Tan Yinlong,Zou Yanhong,Wang Jing,Dai Jiayu,Chu Zengyong
Abstract
AbstractNowadays, the increasing electromagnetic waves generated by wearable devices are becoming an emerging issue for human health, so stretchable electromagnetic interference (EMI) shielding materials are highly demanded. Elephant trunks are capable of grabbing fragile vegetation and tearing trees thanks not only to their muscles but also to their folded skins. Inspired by the wrinkled skin of the elephant trunks, herein, we propose a winkled conductive film based on single-walled carbon nanotubes (SWCNTs) for multifunctional EMI applications. The conductive film has a sandwich structure, which was prepared by coating SWCNTs on both sides of the stretched elastic latex cylindrical substrate. The shrinking-induced winkled conductive network could withstand up to 200% tensile strain. Typically, when the stretching direction is parallel to the polarization direction of the electric field, the total EMI shielding effectiveness could surprisingly increase from 38.4 to 52.7 dB at 200% tensile strain. It is mainly contributed by the increased connection of the SWCNTs. In addition, the film also has good Joule heating performance at several voltages, capable of releasing pains in injured joints. This unique property makes it possible for strain-adjustable multifunctional EMI shielding and wearable thermotherapy applications.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献