Effects of electron beam irradiation on structure and properties of ultra-high molecular weight polyethylene fiber

Author:

Dai Dongliang12,Shi Meiwu13

Affiliation:

1. College of Textiles, Donghua University, Shanghai, China

2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai, China

3. The Quartermaster Equipment Research Institute of the General Logistic Department, CPLA, Beijing, China

Abstract

This study introduced trimethylolpropane trimethacrylate into ultra-high molecular weight polyethylene fibers through supercritical CO2 pretreatment before the fibers were irradiated under an electron beam. Significant differences, emerging in the ultra-high molecular weight polyethylene fibers’ gel content, mechanical properties, and creep property according to their different irradiation doses, were studied through one-way analysis of variance. Regression equations were established between the irradiation dose and the gel content, breaking strength, elongation at break, and creep rate by regression analysis. A reasonable irradiation dosage range was determined after a verification experiment and the impact trends were analyzed; additionally, the sensitized irradiation crosslinking mechanism of ultra-high molecular weight polyethylene fibers was preliminarily examined. Then the surface morphology, chemical structures, thermal properties, and crystal properties of treated ultra-high molecular weight polyethylene fibers were measured. The results showed that as the irradiation dose increased, the gel content first rose and then declined; the breaking strength decreased continuously; the elongation at break increased at first and then decreased; and the creep rate originally fell and then rose before finally declining slowly. Electron beam irradiation had a significant etching effect on the fibers’ surface, and both the melting point and crystallinity decreased slightly.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3