Armouring solutions against high-velocity impact using 2D laminates and 3D warp interlock composites

Author:

Provost Benjamin12,Boussu François12,Coutellier Daniel13,Vallee Daniel4,Rondot Fabien5,Nussbaum Julien5

Affiliation:

1. Université Lille Nord de France, Lille, France

2. ENSAIT, GEMTEX, Roubaix, France

3. UVHC, Valenciennes, France

4. NEXTER SYSTEMS, Satory, Versailles, France

5. ISL, Saint-Louis Cedex, France

Abstract

Since the emergence of the first armoured vehicles on battlefields, armour shield was mainly centred on conventional metallic materials, widespread solutions nowadays. For a long time, weight reduction in armoured protection, which represents the largest part of the vehicle’s overall weight, has been the key parameter for vehicle manufacturers looking forward to optimizing fuel consumption, thus increasing the payload and offering increased manoeuvrability to vehicles. The solution generally developed is a combination between those metallic plates and materials lighter than the current steel armour. In this context, the hybridization of some well-known ballistic alloys with textile composite materials appears to be a high-potential solution for armour-plated protection. Indeed, used as a backing, textile composite materials present some worthwhile properties such as having a very low density compared with steel and good behaviour in terms of ballistic efficiency. The use of a textile composite backing allows a reduction in the thickness of the metal plate by a few millimetres, which has a huge impact on the total protection weight. The difficulty of this hybridization is, of course, to reduce the total mass of the protection solution as cautiously as possible while ensuring the safety of the vehicle. The textile composite backing is also efficient in containing the pieces of shrapnel, which might break loose from the metal plate during impact. However, observations from today’s military theatres of operation reveal that the spectrum of armoured vehicle threats has changed over the last decade with the development of new non-conventional threats commonly referred to as ‘improvised explosive devices’. Those devices generate high-velocity projectiles (accelerated up to a few hundred or thousand metres per second), which are able to perforate most existing armour plating. Thus, performances of today’s armoured solutions are required to be upgraded, in order to provide a better protection level. This improved protection level against new threats can be achieved by developing a composite backing more efficient to stop these projectiles. This study proposes to test and compare the behaviour and efficiency of three different textile composite backings used as up-armouring solutions. Two of those textile backings are innovative composite solutions developed in our textile laboratory, and the third one is a benchmark composite generally used as armouring protection. This study deals with the overall protection, and impact tests are performed on real armour configuration with the metal plate on the front face. Nevertheless, only the impact behaviour of textile composite backings has been investigated in this study. The parameters of the metal plate such as the nature of the alloy and its thickness were defined by our vehicles’ manufacturing partner and cannot therefore be communicated. They remain constant in the three configurations tested, allowing a clear comparison.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3