Experimental simulation of bending damage of silicon nitride yarn during 3D orthogonal fabric forming process

Author:

Wu Ning1ORCID,Li Shuai1,Han Meiyue1,Zhu Chao1,Jiao Yanan1,Chen Li1ORCID

Affiliation:

1. Laboratory of Advanced Textile Composites (Ministry of Education), Institute of Composite Material, School of Textile Science and Engineering, Tiangong University, Tianjin, P.R. China

Abstract

The aim of this study executed on Silicon Nitride (Si3N4) yarn is to examine some bending damage behaviors and fracture mechanisms that occur during the 3D orthogonal fabric forming process. A three point bending experiment device has been developed in order to simulate the Z-binder yarn bending condition. The effects of weft density, fabric thickness, and yarn tension have been studied. The Weibull analysis of the tensile strength show that the bending damage increases with the increase of weft density, fabric thickness, and yarn tension. The resulting bending damage causes a reduction in yarn strength of between 2.5 and 17.2% depending on the bending parameters of yarn. The growth of the fibrillation area also reflects similar trends with tensile strength loss rate. The fibrillation length produced by the yarns is mostly distributed within the range of 0.3 to 0.9 mm. A comparison of the calculation result to experimental data shows the bending fracture probability of filaments inside yarn are less than that of monofilament. The tensile and bending fracture of Si3N4 filaments exhibit typical brittle fracture characteristics.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3