The influence of formation temperatures on the crystal structure and mechanical properties of ultrahigh-molecular-weight polyethylene/high-density polyethylene-blend fibers prepared by melt spinning

Author:

Wang Fei12ORCID,Liu Lichao2,Xue Ping2,Jia Mingyin2,Wang Suwei2,Cai Jianchen3

Affiliation:

1. School of Material and Mechanical Engineering, Beijing Technology and Business University, Beijing, China

2. Institute of Plastic Machinery and Engineering, Beijing University of Chemical Technology, Beijing, China

3. College of Mechanical Engineering, Quzhou University, Quzhou, China

Abstract

The influence of spinning temperature on ultrahigh-molecular-weight polyethylene/high-density polyethylene as-spun blend filaments and the influence of drawing temperature on ultrahigh-molecular-weight polyethylene/high-density polyethylene-blend fibers were investigated. The results showed that the optimum spinning and hot-drawing temperatures were 310℃ and 85℃, respectively, and blending with high-density polyethylene improved the orienting ability of the molecular chains and the crystallization ability. The blend filaments spun at 310℃ had the best molecular chain orientation, crystallinity and crystal orientation of the filaments examined; both lower and higher spinning temperatures were detrimental to the crystal structure growth of the as-spun blend filaments. The optimum drawing temperature of the blend fibers was 85℃, which resulted in blend fibers with the best molecular chain orientation, crystallization, and crystal orientation as well as the thinnest grains of the fibers examined. The highest tensile strength and initial modulus were 1204 MPa and 20.4 GPa, respectively; these high values can be attributed to the fibrillar structure, which consisted of extended molecular chains and thin grains. The results in this paper can help disclose the effect mechanism of formation temperature on the melt spinning method used to produce high-strength ultrahigh-molecular-weight polyethylene fibers.

Funder

Research Foundation for Youth Scholars of Beijing Technology and Business University

Higher Education and High-quality and World-class Universities

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3