Enhanced melt flow UHMWPE/HDPE blends melt spinning and performance study

Author:

Wang Gonghao1ORCID,Liu Jie1,Qin Shengxue1,Zhang Hongbin1,Zhou Haiping1ORCID

Affiliation:

1. College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao China

Abstract

AbstractThe extremely low melt flowability of ultra‐high molecular weight polyethylene (UHMWPE) is the primary obstacle to its melt processing. Particularly in melt spinning processes, the extremely high molecular weight of UHMWPE and the density of entangled molecular chains severely limit its production efficiency and monofilament performance. This study investigates the effect of flow modifiers on the melt spinning process of UHMWPE/HDPE blends, focusing on CaSt2, PEG, and CaSt2/silicone powder composite additives, and their impact on the standard tensile samples and monofilament tensile properties of UHMWPE/HDPE. The mechanism of additive influence on the tensile properties of UHMWPE/HDPE blends is analyzed through tensile strength testing, thermal analysis, and microscopic morphology observation. The results show that in standard tensile samples, CaSt2 or CaSt2/silicone powder composite additives can enhance the crystallinity of the blend, thereby improving its tensile strength. Conversely, adding PEG significantly reduces the crystallinity and tensile strength of the blend. The maximum tensile strength of CaSt2‐modified UHMWPE/HDPE monofilament is 1236.61 MPa. This enhancement is attributed to the lubricating effect of CaSt2, which simultaneously assists the molecular chains in the amorphous region, and the reorientation of the stress‐induced molten lamellar structure under tension, greatly promoting the formation of straight‐chain crystals in the monofilament. During hot drawing, PEG inhibits the formation of straight‐chain crystals in the monofilament, resulting in a 3.06% decrease in maximum crystallinity compared with standard tensile samples. When CaSt2 is combined with silicone powder, the additives tend to aggregate during hot drawing, and these larger aggregate particles hinder the orientation of molecular chains along the drawing direction, resulting in a 30.75% decrease in maximum tensile strength of the monofilament compared with the standard tensile samples.Highlights The tensile property of UHMWPE/HDPE blends modified with additives was discussed. Analytical techniques including DSC, SEM, and tensile strength tests were used. The maximum tensile strength of the monofilament can reach up to 1236.61 MPa. UHMWPE/HDPE/CaSt2 = 60/40/0.5 exhibits the best tensile property.

Funder

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3